
Identity at Scale

Norberto Leite

Principal Engineer@Okta

#pgconfeu

How Okta Uses Postgres

Safe harbor
This presentation contains “forward-looking statements” within the
meaning of the “safe harbor” provisions of the Private Securities Litigation
Reform Act of 1995, including but not limited to, statements regarding our
financial outlook, long-term financial targets, product development,
business strategy and plans, market trends and market size, opportunities,
positioning and expected benefits that will be derived from the
acquisition of Auth0, Inc. These forward-looking statements are based on
current expectations, estimates, forecasts and projections. Words such as
“expect,” “anticipate,” “should,” “believe,” “hope,” “target,” “project,” “goals,”
“estimate,” “potential,” “predict,” “may,” “will,” “might,” “could,” “intend,”
“shall” and variations of these terms and similar expressions are intended
to identify these forward-looking statements, although not all
forward-looking statements contain these identifying words.
Forward-looking statements are subject to a number of risks and
uncertainties, many of which involve factors or circumstances that are
beyond our control. For example, the market for our products may develop
more slowly than expected or than it has in the past; there may be
significant fluctuations in our results of operations and cash flows related
to our revenue recognition or otherwise; we may fail to successfully
integrate any new business, including Auth0, Inc.; we may fail to realize
anticipated benefits of any combined operations with Auth0, Inc.; we may
experience unanticipated costs of integrating Auth0, Inc.; the potential
impact of the acquisition on relationships with third parties, including
employees, customers, partners and competitors; we may be unable to
retain key

personnel; global economic conditions could worsen; a network or data
security incident that allows unauthorized access to our network or data
or our customers’ data could damage our reputation and cause us to
incur significant costs; we could experience interruptions or performance
problems associated with our technology, including a service outage; the
impact of COVID-19 and variants of concern, related public health
measures and any associated economic downturn on our business and
results of operations may be more than we expect; and we may not be
able to pay off our convertible senior notes when due. Further information
on potential factors that could affect our financial results is included in
our most recent Quarterly Report on Form 10-Q and our other filings with
the Securities and Exchange Commission. The forward-looking
statements included in this presentation represent our views only as of
the date of this presentation and we assume no obligation and do not
intend to update these forward-looking statements.

Any unreleased products, features or functionality referenced in this
presentation are not currently available and may not be delivered on time
or at all. Product roadmaps do not represent a commitment, obligation or
promise to deliver any product, feature or functionality, and you should
not rely on them to make your purchase decisions.

Ola, I’m Norberto!

● Principal Engineer @ Okta
● Databases, that’s my thing
● Sometimes, I put things on a scale

norberto.leite@okta.com @nleite

● Challenge of Scaling Identity Management

● Operational Challenges

● Service Releases and Infrastructure Operations

● Database Management at Scale

Agenda

● How complex/hard is Identity Management

● Things we’ve learned operating large fleets

● Stuff that we would like Postgres to have

● Unsolved challenges that we are working on

Takeaways

Okta?

Okta CIC = Auth0

CIAM
Customer Identity and
Access Management

Join us this October as we celebrate Hacktoberfest 2024 by encouraging
developers to contribute to the open-source community. Whether you're new to
open source or an experienced contributor, this is your chance to give back,
make a difference, and win some cool swag in the process.

authtoberfest.io

The Challenge of
Scaling Identity
Management (CIAM)

CIAM Platform Features
All the goodies

https://auth0.com/docs

Pretty simple, right?

Operational Challenges

https://auth0.com/blog/the-architect-s-view-of-auth0-s-new-private-cloud-platform/

Platform Complexity

As systems and services
evolve new features

require different
underlying infrastructure

- changes on
dependencies

How these different
systems interact with
each other and what
“substrate” systems
evolve - monitoring,

logs, metrics

Maintenance, version
management,

infrastructure releases,
and scaling events.

How many toys do we have to play with

Cloud Native

Cloud Native

DBaaS

Cloud Native

DBaaS Isolation

Cloud Agnostic

Multi-Cloud

● Logging
● Metrics
● Monitors and Alerts
● Internal Network Configuration
● Release Management
● Major Version Upgrades
● Deployment Failures
● Testing

Controlled Operational Challenges

● Attacks
● Customer configuration creativity
● Third Party Provider Outages
● Scale induced miss-calculation
● Cascading failures
● External Network

Not So Under Control Operational Challenges

Operational Challenges: Scaling
Exhibit 1 - Tales of things that are not how one thinks they are!

Operational Challenges: Scaling
Exhibit 1 - Tales of things that are not how one thinks they are!

Platform Deployment

Define the “expected” needs in terms of instances

Platform Deployment

Operational Challenges: Scaling

If things grow, auto-scale FTW!

Platform Deployment

Operational Challenges: Scaling

Ok, you grow the client apps … what about the databases?

Platform Deployment

Operational Challenges: Scaling

These are deployed in a redundant architecture

Platform Deployment

Operational Challenges: Scaling

Multiple Redundancy

Databases will fail, make sure we
can withstand any single node
failure

Redundant
Deployment

AZ Spread PITR Enabled

Leaving the ephemeral stuff a side for a second…

Platform Deployment

Operational Challenges: Scaling

But when you need to increase capacity

Platform Deployment

Operational Challenges: Scaling - Vertical

Platform Deployment

Or, if you cluster things nicely

Operational Challenges: Scaling

Platform Deployment

You scale out - sharding

Operational Challenges: Scaling - Horizontal

When to scale out vs
scale up ?

Vertical

● Preferred mechanism
● Increase compute and/or storage capacity as

needed
○ Based on spot brust client needs

○ Constant check for increased capacity requirements

● Easy to operate
● Easy to automate

Which rules do we follow for scaling

Scaling Rules

Vertical

● Preferred mechanism
● Increase compute and/or storage capacity as

needed
○ Based on spot brust client needs

○ Constant check for increased capacity requirements

● Easy to operate
● Easy to automate

Horizontal

● Manually split logical databases into separate
clusters

○ Getting started with Citus Data | Aurora Limitless

● Group working sets based on:
○ Service criticality

○ Backup retention policies

○ Data lifecycle

● Allows for heterogeneous database cluster
deployments

○ Add resources to databases to respond to their needs

○ Cost-effective mindset

Which rules do we follow for scaling

Scaling Rules

Platform Deployment

We do a bit of both

Operational Challenges: Scaling - Auth0 Style

Tier Based Architecture

Not all services have the same
performance and resiliency
profile - protect the most critical
services -> build for failure

Platform Deployment

Ephemeral Datastores Shock Absorbers

Operational Challenges: But don’t forget caches!

https://xkcd.com/705/

Service Releases and
Infrastructure
Operations

Platform Resiliency

As we evolve our
services we need to

keep our fault tolerance
and resiliency high

As we grow in terms of
customer load and are

subjected to more
demanding scenarios
we need to keep the
system stable and

reliable

As we deploy and scale
up our systems our

customers should not
be affected by any of

such movements

Any weather proof

Platform Deployments

Red-Black Deployment, also known as Red-Green Deployment, is similar to
Blue-Green Deployment. It involves maintaining two environments: the existing
“Red” production environment and the new “Black” environment. Traffic is initially
directed to the Red environment, while the Black environment is prepared and
tested. Once validated, traffic is switched to the Black environment.

https://www.linkedin.com/pulse/deployment-models-explained-rizwana-begum

v0

v0

v1

v0

v1

v1

v1

v2

vX

vX+1

vX

vX+1

vX

vX

vX

vX

vX

vX+1

vX

vX+1

vX

vX+1

Service Resiliency

Service Dependencies

A

B C

Service Dependencies

A

B C

Service Dependencies

A

B C

B C

A

Service Dependencies

A

B C

B C

A

Service Dependencies

A

B C

B C

A

Service Dependencies

A

B

C

B C

A

Service Dependencies

A

B

C

B C

A

That’s all very nice, but
what about external
dependencies or IaaS
services?

Service Dependencies

A

B C

B C

A

Service Dependencies

A

B C

B C

A

Service Dependencies

A

B C

B C

A

Service Dependencies

A

B C

B C

A

Service Dependencies

A

B C

B C

A

Degraded Mode

Degraded Mode is the ability your
service will have to operate in a
reduced capacity

Degraded Mode is the ability your
service will have to operate in a
reduced capacity

Read Only Longer
extended

latency

Reduced set of
features

Dedicated vs Shared
Database Clusters

Deployed K8s Cluster

k8s cluster

Every service gets its own database

Dedicated Database Clusters

k8s cluster

… redundantly deployed obviously

Dedicated Database Clusters

k8s cluster

And only talks directly to that cluster

Dedicated Database Cluster

This never happens

Cross service access to different databases

This never happens

Cross service access to different databases

Yes it does happen!

Cross service database access

Very hard to operate

Schema
Conflicts

Integration
Issues

Increased Blast
Radius

This is very nice to have … however

Dedicated Database Cluster

POP QUIZ!

What is the most common
attribute of a resilient system?

Fault Tolerant Redundant Scalable

POP QUIZ!

What is the most common
attribute of a resilient system?

Fault Tolerant Redundant Scalable

EXPENSIVE $$$

Dedicated Database Cluster - Multi-subscriber
Architecture

:(

We still have this

Dedicated Database Cluster - Multi-subscriber
Architecture

Not all databases have the same needs

Database Clusters are sized according to needs

COGS need to be effectively spread across multiple tenants

Dedicated Database -> Expensive Architecture

Why is it expensive?

Operating asymmetric database
deployments

Less standard
deployment

Less
predictability of
workloads and

monitoring

Requires more
fine tuning and

handholding

What’s the alternative?

One that harbours all of our logical databases

Shared Database Cluster

… obviously redundant

Shared Database Cluster

Won’t this cause a similar
problem as the cross database
access between services?

All connecting to the same physical machines

Shared Database Cluster

pgbouncer helps

Shared Database Cluster

pgbouncer Deployments

We deploy pgbouncer as a
isolated service

Dedicated per
workload type
reads vs writes

Good for load
control - helps
scaling during

spikes

Shock absorber
during failover

events and
node rotation*

So, shared cluster FTW?

Dedicated

● Good for service isolation
● Allows for finer level control of individual services

needs
● Segregation of datasets allows for different

backup policies and retention controls
● Increases database nodes footprint
● Increases costs per storage unit

○ needs to be well spread across tenants

● We use it on multi-tenant deployments

Shared

● Simpler deployment
● Increased Blast Radius

○ If database goes down, all services go down

● “Easier” to rollout changes
● Suffers from noisy neighbour
● Preferred deployment for single-tenant

deployments

How we look at it

Dedicated vs Shared Cluster

Tier Based Architecture

Rules

● Shared Cluster
○ similar lifecycle

○ same backup retention policy

○ same service critical tier

○ default

● Dedicated Cluster
○ demanding workloads - the noisy folk

○ address scaling needs

○ limit resource starvation by single service

○ cost effective to scale out

Merging the best of both worlds

Dedicated + Shared Cluster

Database
Management at
Scale

● Bad indexes
● No indexes
● Bad schema migration
● Locking ALTER TABLE
● AUTO-VACUUM
● Extensions OOM
● Manual scripts
● Postgres Major Version Upgrades
● Self-served DDoS
● Cache fallback DoS
● TRIGGERS
● ……

Laundry List of Database Problems at Scale

Database at Scale

Single vs Multi-tenant
Indexes

Auditing Postgres Schemas

The joy of databases

Database problems
manifest themselves at
scale in unexpected
ways!

The joys of making all things the same

Single vs Multi-tenant on Indexes

The joys of making all things the same

Single vs Multi-tenant on Indexes

The joys of making all things the same

Single vs Multi-tenant on Indexes

Multi Tenant
rownum tenant_name

1 pgconfeu
2 devdays
3 pgconfus
4 jp user group
5 fosdem
6 devox
7 jfocus
8 pgconfeu
9 pgconfeu

10 pgconfeu

Single Tenant
rownum tenant_name

1 pgconfeu
2 pgconfeu
3 pgconfeu
4 pgconfeu
5 pgconfeu
6 pgconfeu
7 pgconfeu
8 pgconfeu
9 pgconfeu

10 pgconfeu

The joys of making all things the same

Single vs Multi-tenant on Indexes

single vs multi tenant

Indexes may not behave in the
same way as you expect them to
behave.

Different
indexed values

cardinality
impacts usage

Vacuum will
have a different

profile

Bloat will be
impacted by
workload and

cardinality

What’s up with those recurrent spikes?

Crown of Horns

Is DB Auditing a free lunch?

Still needs to be processed

Audit Logs

Audit logs

No such thing as a free lunch

Recurrent
internal DB

processes need
to be checked

Move all non
operational
workloads
outside DB

Test triggers
and stored

procedures at
scale

Postgres Schemas

In PostgreSQL, a schema is a named collection of database objects, including tables,

views, indexes, data types, functions, stored procedures, and operators.

A schema allows you to organize and namespace database objects within a database.

A database may contain one or more schemas. However, a schema belongs to only
one database. Additionally, two schemas can have different objects that share the
same name.

https://neon.tech/postgresql/postgresql-administration/postgresql-schema

https://neon.tech/postgresql/postgresql-views
https://neon.tech/postgresql/postgresql-indexes
https://neon.tech/postgresql/postgresql-tutorial/postgresql-data-types
https://neon.tech/postgresql/postgresql-plpgsql/postgresql-create-function
https://neon.tech/postgresql/postgresql-plpgsql/postgresql-create-procedure

Postgres Schemas

DB1

Postgres Schemas

DB1

Postgres Schemas

DB1

Postgres Schemas

DB1

Postgres Schemas

DB1

Postgres Schemas

DB1 schema1

Postgres Schemas

DB1 schema1

schema2

Ok, so why is this valuable at
scale?

Postgres Schemas

DB1 App schema

Extensions
schema

Postgres Schemas

DB1 App schema

Extensions
schema

Postgres Schemas

DB1

Extensions
schema

DB1

PG 16

PG 11

App schema

Postgres Schemas

DB1

Extensions
schema

DB1

PG 16

PG 11

App schema

App schema

Postgres Schemas

Very useful on database
migrations!

Keep
permissions

isolated

Allow for
simpler CDC
and model
migrations

Worst thing I
ever said it was

ok to live
without :(

Quick Recap

Pretty simple, right?

Tier Based Architecture

Not all services have the same
performance and resiliency
profile - protect the most critical
services -> build for failure

Multiple Redundancy

Databases will fail, make sure we
can withstand any single node
failure

Redundant
Deployment

AZ Spread PITR Enabled

pgbouncer Deployments

We deploy pgbouncer as a
isolated service

Dedicated per
workload type
reads vs writes

Good for load
control - helps
scaling during

spikes

Shock absorber
during failover

events and
node rotation*

Audit logs

No such thing as a free lunch

Recurrent
internal DB

processes need
to be checked

Move all non
operational
workloads
outside DB

Test triggers
and stored

procedures at
scale

Thank you!

